Examining the new FAT 32 system

Inside Microsoft Windows 95�A publication of the Cobb Group

Published January 1998

If you’re like most Windows 95 users, you’re running a Pentium system with a gigabyte or more of hard disk space designated as drive C. Since one GB is equivalent to 1,024MB, you probably never imagined that you’d fill your disk to capacity. However, once you started installing software and creating documents, you no doubt noticed that your hard disk appeared to fill up much quicker than you thought possible. If you’re using Plus!’s System Agent, you may have even encountered the Low Disk Space Notification dialog box, shown in Figure A.

�

Figure A You may be surprised to see this dialog box.

In all actuality, a large percentage of your hard disk is probably empty. Unfortunately, this space is wasted and unavailable because the current FAT (file allocation table) system in Windows 95 wasn’t designed for today’s massive hard disks. Therefore, the FAT doesn’t manage the available space on large hard disks very efficiently.

To make Windows 95 use today’s hard disks more efficiently, Microsoft recently upgraded the FAT system. The new system, known as FAT 32, is now available with the OSR2 version of Windows 95 and will be standard equipment with Windows 98 when it ships later this year.

In this article, we’ll discuss the new FAT 32 system and show you why it’s more efficient. To help you understand and appreciate the advantages of the FAT 32 system, we'll begin with a detailed look at the current FAT system, which we'll refer to as FAT 16.

What is the FAT and how does it work?

In order to grasp the inadequacies of the FAT 16 system, you need to understand what the FAT is and how it manages your hard disk. To do so, imagine that your hard disk is a filing cabinet. In a filing cabinet, you store information on pieces of paper as files. You store the files in folders within folder dividers. To keep track of what’s in the folders and dividers, you place tabs on them noting their contents.

Basically, the FAT system works the same way with your hard disk. It provides the electronic equivalent of papers, folders, dividers, and tabs. The FAT system stores the tabs indicating the file locations in a special database called the file allocation table, or FAT for short.

To carry our analogy further, on a hard disk the pieces of paper are known as sectors. Sectors are the smallest units of storage on your hard disk and measure 512 bytes in size. To keep track of the sectors, the FAT organizes them into units called clusters, which are similar in function to the file folders.

When you save a file on your hard disk, the operating system looks in the FAT for free space in the cabinet. It finds the free clusters on your hard disk, writes the data to the sectors, and makes notations of the filename and the cluster’s location in the FAT.

Overall, the FAT system works pretty efficiently as far as keeping track of your files goes. However, the problem with the FAT is that it’s limited in size. It can store only so many items at a time. The reason for this can be traced back to the FAT system’s origin.

The price of backward compatibility

The FAT system was invented in 1977 as a way to store data on floppy disks for Microsoft Stand-alone Disk Basic. At that time, floppies stored 180KB of data. Soon, floppies grew to larger capacity and PCs began shipping with hard disks.

Back in those days, the memory models used for designing operating systems had limits. For example, when the FAT was invented, it was capable of holding only 64KB of data. This limit was imposed because DOS was a 16-bit operating system designed to work with 16-bit computer architecture. Let’s take a moment to examine this further.

As we mentioned in our analogy, a hard disk is divided into 512-byte pieces called sectors. In order to keep track of its sectors and perform as a 16-bit operating system, DOS assigns a 16-bit binary number to each sector on the hard disk and stores that number in the FAT. In decimal terms, the largest number you can write with 16-bits is 65,535, which is equivalent to 64KB. Thus, the FAT can keep track of at most 65,535 sectors, or 64KB of data.

This 64KB limit was fine for the storage capacities at the time. Even FAT entries on the seemingly mammoth 10MB disks wouldn’t exceed 64KB. However, by the mid-1980s, hard-disk sizes began to increase. Disks holding 40MB and 60MB were becoming common. It was also beginning to become apparent that the FAT had reached its limit. With 65,535 sectors of 512 bytes, the maximum hard disk size that the FAT could keep track of was 32MB (65,535 * 512).

This meant that if you had a large disk, you had to partition it into 32MB pieces in order to stay within FAT’s limits. For example, to use a 40MB hard disk, you’d have to partition it into two drives: one would be 32MB and the other would be 8MB. As you can imagine, this wasn’t very efficient.

To compensate for the 64KB limit on the FAT, Microsoft developed a workaround which it implemented in MS-DOS 4.0. To extend the FAT’s capabilities, MS-DOS 4.0 grouped the sectors on the hard disk into clusters and then replaced the sector addresses in the FAT with cluster addresses. Thus, the FAT could store addresses for 65,535 clusters. This meant that you could now create partitions larger than 32MB and still stay within FAT’s 64KB limit.

When you create a partition in DOS that’s larger than 32MB, DOS increases the number of sectors contained in a cluster in order to keep the FAT under its 64KB limit. Table A shows the sizes of the clusters used by different hard-disk sizes.

Table A The bigger your disks, the bigger your clusters

Disk Size	Cluster Size

0 - 32MB	1/2KB

33MB - 64MB	1KB

65MB-128MB 	2KB

129MB - 256MB 	4KB

257MB - 512MB	8KB

513MB - 1GB 	16KB

1.1GB - 2GB	32KB

2.1GB - 4GB 	64KB

Fat FAT disks = fat clusters

As you can see from Table A, when the standard hard disk got larger, DOS was forced to increase the cluster size to remain within the 64KB limit. This system worked fine until hard disks surpassed the gigabyte level. Once that happened, cluster sizes jumped to a whopping 32KB. Having such a large cluster size can be a huge problem for most users—especially if you store lots of small files on your hard disk. No matter how small the file, it will consume at least one cluster.

For example, if you store a 1KB file on a 1.2GB hard disk, that small file will take up an entire 32KB of space. The other 31KB will remain empty. This unused space in a cluster is called slack space. Since the operating system can’t write data into slack space, it’s completely wasted. So again, it became obvious that the FAT had reached another limit.

How is FAT 32 more efficient?

Now that you have a basic understanding of how the FAT works and the problems that are inherent in its design, you’ll appreciate the advantages of the FAT 32 system. Before we go on, it’s important to understand that FAT 32 is still based on the original FAT system and works very similarly in order to remain compatible with existing programs, networks, and device drivers. The biggest improvement in FAT 32 is its ability to efficiently manage storage space on today’s large hard disks.

Smaller cluster size

To improve storage efficiency, the FAT 32 system uses a 4KB cluster size for all hard disks under 8GB. This reduces the amount of slack space on your hard disk when you save small files.

For example, saving a 1KB file on a 1GB hard disk using the old FAT system takes up 32KB of space. Saving the same file on the same hard disk using the FAT 32 system, however, takes up only a 4KB of space—that’s a savings of 28KB. While this may sound trivial, when you look at an entire hard disk with thousands of small files, the savings is dramatic. In fact, Microsoft guarantees that the average large hard disk will use its disk space at least 10 to 15 percent more efficiently. However, in some cases, we’ve determined that the space savings is even larger—reaching almost the 50-percent range. Of course, the results vary depending on the number of small files on the hard disk.

Improved reliability

FAT 32 also offers advantages that fall into the category of improved reliability. For instance, under the FAT 16 system, the root directory could be located only at the beginning of the hard disk. If anything happened to that section of the hard disk, the whole thing was unusable.

Under the FAT 32 system, the root directory can be located anywhere on the hard disk. This means that if something does happen to the section of the hard disk storing the root directory, the new FAT 32 hard disk utilities will be able to easily move the root directory and repair the defective area.

Another advantage FAT 32 has over FAT 16 is that it can use both the default and the back-up copy of the FAT. The FAT 16 system can use only the default copy to run your system; the backup copy is used only by low-level disk utilities when repairing the default FAT. FAT 32, on the other hand, can use both copies of the FAT. Thus, if something happens to the default FAT, the system will continue to run off the backup copy until the default can be repaired.

This ability to run off either copy of the FAT opens the door for more dramatic improvements in the near future. For example, this technology will soon enable you to dynamically resize your partitions without losing data.

A larger root directory

In addition to being able to locate the root directory anywhere on a hard disk, the FAT 32 system has eliminated the 512 entry limit of the root directory. The FAT 16 system uses 32 sectors of 512 bytes each to store the root directory. Thus, the size of the root directory on a hard disk is limited to 16KB, or 512 entries. In other words, the FAT 16 system will let you store at most 512 files and folders in the root directory. Under the FAT 32 system, you can have as many files and folders in the root directory as you want.

Larger hard disks

If you thought a gigabyte hard disk was large, wait until hard disk manufacturers release their first terabyte (TB) hard disks. (A terabyte is equal to 1,099,511,627,776 bytes—roughly one trillion bytes!) In preparation for that day, Microsoft has given FAT 32 the ability to support hard disks as large as 2TB.

Conclusion

If you have a gigabyte or larger hard disk, you’ve probably been surprised at how quickly your hard disk is filling up. The reason behind this problem is that the FAT 16 system is out-dated and can’t manage disk space very efficiently on the new large hard disks. In this article, we’ve discussed the FAT 16’s problems. We also examined the new FAT 32 system and discussed the advantages it brings to the table.

The article entitled “Examining the new FAT 32 System” was originally published in Inside Microsoft Windows 95, January 1998. Copyright © 1988, The Cobb Group, 9420 Bunson Parkway, Louisville, KY 40220. All rights reserved. For subscription information, call the Cobb Group at 1-800-223-8720.

We at Microsoft Corporation hope that the information in this work is valuable to you. Your use of the information contained in this work, however, is at your sole risk. All information in this work is provided "as is," without any warranty, whether express or implied, of its accuracy, completeness, fitness for a particular purpose, title or non-infringement, and none of the third-party products or information mentioned in the work are authored, recommended, supported or guaranteed by Microsoft Corporation. Microsoft Corporation shall not be liable for any damages you may sustain by using this information, whether direct, indirect, special, incidental or consequential, even if it has been advised of the possibility of such damages.

�Master Boot Record

When the computer is powered on, a mechanism is required to manipulate interrupts, find the hard disk(s), and launch code necessary to load drivers located on the boot drive. This mechanism is contained in the Master Boot Record (MBR). The MBR of a hard disk resides at the first physical sector of the disk: track 0, side 0, sector 1.

The MBR is divided into five sections: Jump Code, Error Messages, Free Space, the Partition Tables, and Ending Signature. Table 10.5 outlines some of the more important components of the MBR.

Table 10.5 Important components of the MBR

Area	Functions or purpose

Jump Code: 139 bytes�Load MBR into memory���Enable interrupts���Scan disk characteristics���Find C: drive���Load boot sector from C: drive��Error Messages: 80 bytes�Invalid Partition Table���Error loading operation system���Missing operating system��Free Space: 227 bytes���Partition Tables: 64 bytes�Active partition���Starting head, sector, and cylinder���Partition Type���Ending head, sector, and cylinder���Total number of sectors on this partition��Ending Signature: 2 bytes�Define the MBR boundary��

If one of the values becomes corrupted, the system probably will not boot. Likewise, if a new value is introduced by an operating system and an existing software utility does not understand the new value, there is a possibility of data corruption.

The area of the MBR that has changed for FAT32 is the Partition Table. The Partition Table is divided into four 16-byte entries. Inside the Partition Table is the Partition Type. This entry is important for identifying the partition structure for the operating system. In order for FAT32 to accomplish its new capabilities, the MBR contains the following two new Partition Types:

DOS32. Defines primary 32-bit FAT partitions of up to 2,047 GB. It is used when the primary partition does not require logical block addressing (LBA) to access that partition. LBA is a method of accessing hard disk drives based on the extensions of INT 13.

DOS32X. Defines 32-bit FAT partitions of up to 2,047 GB. It is used when any portion of either the primary or extended partition is beyond 1,024 cylinders, 63 sectors per track, and 16 heads, and requires LBA to access. These new 32-bit FAT partition types cannot be accessed through MS-DOS 6.x or earlier.

�32-bit File Allocation Table

The purpose of the FAT has not changed. It still acts as a table for linking the clusters of a file together. File/Directory entries point to the first cluster in the file which the operating system uses to find the first entry in the FAT. The FAT then tracks the location of the remaining clusters in the file. The entries are twice the size (4 bytes) and you can hold many more clusters on a FAT32 drive.

With the 16-bit FAT, the quantity of clusters on a drive is 65,525 (216 with 10 reserved). With a 32-bit FAT, the highest 4 bits of the 32-bit values are reserved and are not part of the cluster number. Therefore, the maximum amount of clusters on a 32-bit FAT is: 268,435,445 (228 with 10 reserved).

Stepping Through a FAT32 Entry

The starting cluster given in the file/directory entry tells the operating system where to find the first piece of that file. The starting cluster also tells the operating system where to look in FAT32 for the next cluster number. The entry for a starting cluster in a file entry is in bold below.

49 4F 20 20 20 20 20 20-44 4F 53 07 00 00 00 00 IO SYS.....

00 00 00 00 00 00 80 32-3E 1B 02 00 46 9F 00 00 2....F...

Two additional entries are used in the 32-bit directory entry. These two entries are taken from a reserved area and in this example are shown above as 00 00. Together with the existing 2 byte entry (02 00), there is a four-byte entry (00 00 00 02) to search the FAT. The following is a sample tracing of the file in a 32-bit FAT:

F8 FF FF 0F FF FF FF 0F-03 00 00 00 04 00 00 00

05 00 00 00 06 00 00 00-07 00 00 00 08 00 00 00

09 00 00 00 0A 00 00 00-0B 00 00 00 0C 00 00 00

0D 00 00 00 0E 00 00 00-0F 00 00 00 10 00 00 00

11 00 00 00 12 00 00 00-13 00 00 00 14 00 00 00

15 00 00 00 16 00 00 00-17 00 00 00 18 00 00 00

19 00 00 00 1A 00 00 00-1B 00 00 00 FF FF FF F8

As with FAT16, F8 is the media descriptor byte. The next 7 bytes, FF FF 0F FF FF FF 0F, are reserved. The clusters are grouped in 4 byte numbers as:

03 00 00 00, 04 00 00 00, 05 00 00 00, 06 00 00 00

And so on. Invert the numbers to read:

00 00 00 03, 00 00 00 04, 00 00 00 05, 00 00 00 06

And so on, to trace the file through the FAT. (The contents in the second entry is 00 00 00 03. F8 FF FF FF, and FF FF FF 0F are grouped as entries 0 and 1 respectively.) The new end of file marker is FF FF FF F8.

How Win.com Determines Improper Shutdown

Of the first 112 bytes of the FAT32, the first 8 bytes are reserved. The eighth byte of the reserved area, by default, is 0F. The virtual file allocation table (VFAT) and the Windows 98 shutdown process manipulate the fourth bit of this byte to 1 or 0.

·	0 = VFAT has written to disk

·	1 = Windows has properly shutdown

When you write a file to the disk, VFAT handles the write. During the write, VFAT clears the fourth bit to 0 (07h). When Windows 98 exits properly, this bit is reset to 1. During reboot, Win.com reads that bit. If it is set to 0, it runs ScanDisk to check the drive for errors.

Hard Sector Error. Windows 98 detects a hard sector error during startup. This process toggles the third bit to zero (0Bh). When detected during startup, Windows 98 automatically launches ScanDisk with a surface scan test.

Disabling ScanDisk at Boot. There is a way to disable the improper shutdown check. It is in the Msdos.sys file under [OPTIONS]. The parameters for AutoScan are as follows:

Value	Definition

AUTOSCAN = 0	Ignore the bits in the reserved FAT entry

AUTOSCAN = 1	Default behavior, run ScanDisk

Mirroring

On all FAT drives, historically, there are two copies of the FAT. If an error occurs reading the primary copy, the file system will attempt to read from the backup copy. On 12-bit and 16-bit FAT drives, the first FAT is always the primary copy and a modification is automatically written to the second copy. When a second FAT is written to as a backup, the process is called mirroring.

On new FAT32 drives, mirroring a secondary FAT can be disabled. This means that a read/write is quicker using one FAT, or if the first FAT is sitting on corrupted sectors, the second FAT can be used as a primary with the first FAT ignored.

Note On FAT32 drives, a FAT can be very large. Disabling duplicate FAT writes can make FAT access quicker. Windows 98 does not provide a mechanism for eliminating the use of a second FAT. Mirroring is always enabled. Third-party utilities, however, might include this ability as users with larger hard disks might want to disable a second FAT to speed disk access. Any issues about mirroring should be directed to that third-party utility.

Root Directory

With FAT32, the limitation is now 65,535 root directory entries.

There is a new entry in the Boot Sector that points to the first cluster of the root directory. The root directory is no longer forced to reside at a specific location after the second FAT and it can grow just like a subdirectory.

There is a trade off in performance when you have a large number of directory entries to pass across when searching for actual data. For this reason, it is recommended that you limit the number of root directory entries to a small, manageable number. There is no actual recommended size for the same reasons as there is no optimal cluster size to choose from.

Extensions Changed, Superseded, or No Longer Supported

The following list presents some areas where FAT32 may be incompatible with legacy software:

·	Share services are a part of the installable file system (IFS) manager. VFAT uses them to provide full file sharing functionality. All MS-DOS-based, Win16-based, and Win32-based applications have full file sharing services available to them. As a consequence, the MS-DOS utility Share.exe is no longer necessary and is not provided in Windows 98.

·	VFAT implements an enhanced version of FASTOPEN. As such, the MS-DOS FASTOPEN utility is no longer necessary, but can install without error.

·	Windows 3.x File Manager is not supported since it may misreport free or total disk space.

·	File Control Block (FCB) has limited support but this should not be a problem.

·	Dealing with files larger than 2 GB (opening, creating, writing) may cause problems on non-FAT32-aware programs.

·	Absolute disk reads and write utilities should be upgraded to recognize FAT32.

·	Users should not dual-boot Windows 98 with FAT32 and Windows NT 4.0.

·	Interlink does not work on FAT32.

�FAT32

This section discusses problems and potential support issues that exist with FAT32. The list below summarizes some points to remember about FAT32:

·	You cannot boot to a previous operating system and access a FAT32 volume.

·	Windows NT 4.0 cannot access a FAT32 volume.

·	DriveSpace 3 is not supported on a FAT32 volume. However, you can have one drive FAT32 and the other a FAT16 and use DriveSpace 3 on the 16-bit FAT volume.

·	Disk Manager users should upgrade to 7.04 or higher.

·	CHKDSK will not fix errors on FAT32 drives; instead, use ScanDisk.

·	Applications having problems with a program set up on a FAT32 drive should have their program upgraded.

·	Legacy versions of ScanDisk will not work on FAT32.

·	DrivParm has been updated to recognize FAT32.

·	File Control Blocks (FCBs) has limited support.

·	Dealing with files larger than 2 GB may cause problems on non-FAT32-aware programs.

·	Absolute disk read and write utilities should be upgraded to recognize FAT32.

·	Interlink will not work on FAT32.

Booting from a previous operating system.

The new file system is not backward compatible. You cannot access a FAT32 volume from any MS-DOS version before 7.1. Attempting to access a FAT32 volume with a previous version of MS-DOS will initiate a “Non-DOS Partition” error message. If you boot from a floppy with a previous version and all the drives are FAT32, you will not be able to access the drives. There is no problem accessing the C drive if the C drive is a 12-bit or 16-bit FAT.

You must have a Startup Disk from the new operating system.

Windows NT (version 4.0 or earlier) and FAT32.

Currently, Windows NT cannot access a FAT32 drive. You will get one of two messages.

If the capacity of the drive is greater than 4 GB:

The drive is not a valid partition.

If the capacity of the drive is less than 4 GB:

The drive is not formatted.

DriveSpace 3.

DriveSpace 3 and FAT32 are incompatible. DriveSpace 3 is included with Windows 98, and it has been modified to detect FAT32 drives, but it will not compress them. You can still compress FAT16 drives even if another drive is FAT32. DriveSpace 3 components are included in Windows 98.

DriveSpace 3 and Cluster Allocation Granularity.

Do not assume that since you reduce the amount of slack space at the end of the clusters, the capacity of a FAT32 drive should increase as much as if you were using DriveSpace 3. There are two components in DriveSpace 3 compression — tokenization and reduction of the cluster size.

There are no compression features in FAT32; just smaller clusters. Gained space is not a function of compression, but more a function of the files sizes on the drive and how many files are on that drive. If you do not have many files on the drive, there will not be a significant improvement in space. The point and advantage of FAT32 is efficiency.

Disk Manager.

Using Ontrack Systems Disk Manager product on a system that is booting from a FAT32 drive may result in a long pause at boot time and/or that the drive will be set to run in compatibility mode. With version 7.0x, you can use the /L=0 option with Disk Manager to avoid this pause.

If you are using an earlier version of Disk Manager, you should update to version 9.0 and use the /L=0 switch if you use FAT32. Contact Ontrack for an upgraded driver, or check their site on the World Wide Web.

Io.sys floppy disk support.

Io.sys floppy disk support had some problems that have been fixed. When Io.sys copied the BIOS Parameter Block (BPB) from a floppy disk into memory, some data structures were truncated and some fields were ignored based on assumptions that the media was a floppy disk. Also, initializing a drive as “other” (such as an external floppy) would always set up as a 12-bit FAT and discard bits identifying the total sectors or not examine the number of read/write heads.

The problems in building the BPB have all been fixed so that Io.sys now correctly copies all of the BPB fields out of the boot sector on the disk inserted in the drive. Also, Io.sys has increased less than 5 KB in size in conventional memory because of the changes in the real-mode kernel that accommodate FAT32 drives.

If a program was written to work around these problems on its own, you may need to obtain an update that recognizes FAT32. If you begin to experience external drive problems from an application or driver, test with Windows, not the application in question. You can obtain an update that recognizes FAT32 from the vendor.

Making sure a disk is formatted for a FAT32 system.

When you try to defragment a FAT32 file system drive, you may receive the following error message:

Windows cannot defragment this drive. Make sure the disk is formatted and free of errors. Then try defragmenting the drive again.

ID No: DEFRAG0026

This can be caused by running an earlier version of Defrag.exe than the version included with Windows 98.

Invalid media error message when formatting a FAT32 partition.

When you try to format a FAT32 file system partition larger than 8,025 MB from within Windows 98, you may receive the following error message:

Verifying <xxx.xx>M

Invalid media or track 0 bad-disk unusable

Format terminated

where <xxx.xx> is the size of the partition.

This error occurs if there is a non-MS-DOS partition preceding the extended MS-DOS partition and the primary MS-DOS partition has been formatted using the real-mode Format.exe command. To resolve this issue, format the volume using the following steps.

To format the volume

 1.	Click Start, click Shut Down, click Restart in MS-DOS mode, and then click OK.

 2.	Type the following command

format <drive>:

	where <drive> is the drive letter for the partition you want to format.

 3.	Press ENTER.

 4.	When the partition is formatted, type Exit to restart Windows 98.

You must run CVT1 to convert a drive to FAT32.

When you attempt to convert a drive to the FAT32 file system, you may receive the following error message:

You must run CVT1 to convert a drive to FAT32. In Windows, click the Start button, point to Accessories, point to System Tools, and then click the Drive Converter (FAT32) icon. The conversion was canceled.

This error message can occur if you attempt the conversion when in an MS-DOS window. When the computer is booted to a command prompt, run Cvt.exe by typing the following command:

cvt <drive> /cvt32

where <drive> is the drive to be converted.

Windows 98 partition types not recognized by Windows NT.

When you set up Windows NT on a computer that has Windows 98 preinstalled, the FAT partitions may be shown as unknown.

Windows NT cannot recognize primary partitions using the FAT32 format. Backup any data that you might need to save and then delete the partition(s) using Fdisk from either MS-DOS or Windows 98.

Windows 98 supports four partition types for FAT file systems that Windows NT cannot recognize. The partition type can be identified by the System ID byte in the partition table. This byte is located at the following offsets:

0x1C2 = Partition 1

0x1D2 = Partition 2

0x1E2 = Partition 3

0x1F2 = Partition 4

The four values used by Windows 98 that Windows NT does not recognize are as follows:

0x0B Primary Fat32 Partitions up to 2047 GB

0x0C Same as 0x0B, uses Logical Block Address Int 0x13 extensions

0x0E Same as 0x06, uses Logical Block Address Int 0x13 extensions

0x0F Same as 0x05, uses Logical Block Address Int 0x13 extensions

The FAT partition types that Windows NT version 3.x and 4.0 can recognize are:

0x01 Fat12 < 10 megabytes

0x04 Fat16 < 32 megabytes

0x06 Fat16 > 32 megabytes

0x05 Extended (may be FAT, HPFS or NTFS)

CHKDSK.

CHKDSK will not find or repair errors on FAT32. CHKDSK is not being updated to repair the new file system, but it will display the file system statistics. Use the real-mode ScanDisk if you cannot get into Windows 98.

Application setup.

The standard API for determining the free space on a drive is being intercepted by shell32.dll. When installing to a drive larger than 2 GB or with more than 2 GB free, shell32.dll readjusts the values for 16-bit programs to run properly.

All properly coded programs should call the correct API for determining free space and existing disk space. There should be no problem installing 16-bit applications on a FAT32 volume. If the program hangs during installation or displays an error message indicating not enough space to install, the application is using a different API and you should obtain an update from the vendor.

ScanDisk.

Legacy versions of ScanDisk will not work on FAT32. You can receive a variety of error messages, but the following is the most common on that Windows 98 displays:

This version of Microsoft ScanDisk will work only with MS-DOS versions 5.0 and later.

With an old version of Scandskw.exe, Scandisk.exe, or Dskmaint.dll on the drive, you will also receive errors.

In both cases, you should use the file versions that come with Windows 98.

DRIVPARM.

DRIVPARM is a Config.sys command. The numbers entered for the /f, /h, /s, and /t switches were not checked to see if they were too large, now they are. The /f number must be < 10; the /h number must be < 256; the /s number must be < 64; and the /t number must be <= 1024.

Check Help for assistance with these parameters. There are three new switches that allow the setting of other device parameters. If none of these new flags is present, the call continues to do exactly what it did in previous versions.

/a:# - sectors/cluster, must be 1, 2, 4, 8, 16, 32, or 64

/v:# - number of reserved sectors

/r:# - number of root directory entries, must be a multiple of 16

A value of 0 means use the default value.

The new switches allow media of any type to be set, including 12-bit, 16-bit, and 32-bit FAT.

Important It is strongly recommended that you specify /f:7 whenever using any of these new switches so that the media defined will have the 0F0h media byte value. /f:5 will give an error. The other /f:# are allowed, but may not work properly if their default media byte value is not 0F0h.

FAT32 Extension Changes

With the significant changes to the new file system, some previous extensions are no longer supported or have changed. The following list are extensions no longer supported.

SHARE.

SHARE is no longer supported in real mode under MS-DOS 7.1. Share services are a part of the IFS manager. VFAT uses them to provide full file sharing functionality. All MS-DOS-, Win16-, or Win32-based applications have full file sharing services available to it. As a consequence, the MS-DOS utility Share.exe is no longer necessary and is not provided in Windows 98.

FASTOPEN.

FASTOPEN support has been removed from the Io.sys. As with SHARE, it can be installed without error, but Io.sys never calls it.

Windows 3.1 File Manager.

Winfile.exe (the old Windows 3.1 File Manager) does not show accurate free drive space on FAT32 drives that are over 2 GB in size, nor will it display long file names.

Extensions Changed or Superseded

The following functions/extensions have new limitations on FAT32 media.

FCBs.

Support for File Control Blocks (FCBs) is reduced. The Open and Create functions only work for creating a volume label on a FAT32 drive. Programs still using FCBs for finding, deleting or renaming a file will still perform as expected.

Writing to a large file.

To increase a file to a size greater than 2 GB in size, the file must be opened with a new Extended Size flag. If such a file is not opened using this flag, write functions fail and you receive an “Error Access Denied” message.

Opening and creating a large file.

To open a file to a size greater than 2 GB in size, the file must be opened with a new Extended Size flag.

Errors arise from opening or changing files greater than 2 GB from non-FAT32 aware programs. You will need to obtain an upgrade from the application vendor.

Interrupts 25h/26h absolute disk read/write.

Many utilities use absolute disk reads and writes to function. Utilities include disk editors, backup programs, defragmenters, virus scanning software (especially Master Boot Record [MBR] and Boot Sector [BS] scanning), and repair utilities. These utilities can cause problems accessing a drive where the underlying foundation is unknown.

Int 25h/26h is superseded by Int 21h Function 7305h Ext ABSDiskReadWrite for FAT32 drives. As with Windows 95, Int 25h/26h is designed to fail by displaying a blue screen and informing the customer not to read/write to the disk. Programs designed for Windows 98 that invoke volume locking will need to be upgraded for FAT32. These utilities should continue to work properly on FAT16 drives. Also, Windows 95 utilities, including ScanDisk and Defrag, do not work on FAT32 volumes.

Free disk space.

If total or free disk space is greater than 2 GB, then 2 GB is returned. This function, GetDiskFreeSpace, is superseded by GetDiskFreeSpaceEx. GetDiskFreeSpace, for compatibility reasons, now never reports more than 1.999999 GB free under Windows 98.

The only time you might have a problem is if the program does not use GetDiskFreeSpace when determining free space on a volume. If a program has a problem with a drive larger than 2 GB, then it is probably using some other method to determine the free space. You should contact the manufacturer to update the program to FAT32.

Drive parameters.

MS-DOS and Windows keep track of drive characteristics in memory. For example, if you are copying a file to a floppy disk from Microsoft Excel, the application goes to this area to identify the media type. The information here is identical to the BIOS Parameter Block (BPB) in the Boot Sector. Properly written programs use this area of memory for that drive’s information instead of going to the BPB. This area of memory is called the Drive Parameter Block (DPB).

When applications need to know about a drive, such as drive letter, or size of its sector, they access the DPB and use its information accordingly. The functions used to get that information have been superseded. The new DPB contains the FAT32 values by extending the existing DPB to include new 32-bit values while keeping the existing 16-bit fields for compatibility.

On drives larger than 2 GB (or if there is more than 2 GB free), if an application is displaying strange behavior anytime a drive or disk is accessed, it could be getting incomplete information from the old DPB. Also, some programs assume the size of internal Windows data structures. For example, some applications assume that a DPB is 33 bytes long and will never change in size. Programs like this will need to be upgraded to recognize the new ExtDPB. Also, third-party drivers that depend on the old DPB to load will hang if they do not have an error handler in place to terminate the driver.

Dual boot and FAT32.

You cannot use FAT32 on a machine that you need to dual boot to the original release of Windows 95, Windows NT 4.0 (or earlier), Windows 3.1, or MS-DOS 6.x. These operating systems are unable to access a FAT32 partition. However, it is still possible to use dual boot where there are multiple hard disks installed.

InterLink.

The InterLink networking product contained in MS-DOS 6.x will not function properly in MS-DOS mode if you are using FAT32. If you are running InterLink as a server on a FAT32 drive, all connections and inquiries (such as DIR) result in the following error message:

"File allocations table bad, Drive X"

Also, the InterLink Manager shows the incorrect total drive size. This problem does not occur on FAT16 drives. To see your FAT32 server, start your computer in protected mode with InterLink running.

You will need to use Direct Cable Connection to get connectivity.

Save to File (Hibernate) feature may be incompatible with FAT32.

On computers containing a BIOS made by Phoenix Technologies, you might not be able to use the Save to File feature if your primary (boot) drive is formatted using FAT32. If your PhDISK utility is earlier than version 5.0, you must obtain an updated version of the utility and an updated ROM BIOS from your computer manufacturer in order to use a Save to Disk file. With older versions of the ROM BIOS, your computer may be unable to start if it tries to read a Save to Disk file from a FAT32 drive. If this occurs, you must disable the Save to File feature in your ROM BIOS. This does not affect computers using a disk partition to store the Save to Disk data.

Ontrack Systems Disk Manager.

If you use the Ontrack Systems Disk Manager program on a computer with FAT32 drives, there might be a long pause when you start your computer and/or the drive will be set to run in compatibility mode. If you use version 9.0x, you can avoid this pause by using the /L=0 option with Disk Manager. To do this, carry out the following steps:

To use the /L=0 option with Disk Manager

 1.	Start Disk Manager.

 2.	Click the Maintenance menu, and then click Update Dynamic Drive Overlay.

 3.	Add /L=0 to any other options that are already present.

 4.	Save the settings, and then restart your computer.

	If you are running an earlier version of Disk Manager and you want to use FAT32, you should update to version 7.04 or later and use the /L=0 switch.

V Communications System Commander.

Versions 2.28 and earlier of V Communications System Commander are incompatible with FAT32. If your primary (boot) hard disk uses FAT32 exclusively, you must obtain version 3.0 or later of System Commander.

Iomega Jaz tools may be incompatible with FAT32.

If you format an Iomega Jaz disk using FAT32, you may need to obtain updated versions of the Jaz tools. Older versions of the tools do not support FAT32 Jaz disks properly. As a result, the eject, write-protection, and password-protection options will be disabled. Updated versions of these tools that are compatible with FAT32 are available from Iomega, and from the Microsoft Windows Driver Library contained on the Windows CD-ROM disk and available for download from various online services.

Syquest Techology, Inc. device drivers.

Older versions of the Squatdvr.sys and Sqdriver.sys device drivers are incompatible with this version of Windows and will hang when your computer starts if your primary (boot) hard disk uses FAT32. You must remove the associated DEVICE= line from your Config.sys file in order to start your computer from a FAT32 drive. Updated versions of these drivers that are compatible with FAT32 are available from Syquest, and from the Microsoft Windows Driver Library contained on the Windows compact discand available for download from various online services.

�MS-DOS Partitioning Summary

PSS ID Number: Q69912

Article last modified on 07-21-1998

2.x 3.x 4.x 5.x 6.00 6.20 6.21 6

MS-DOS WINDOWS

==

The information in this article applies to:

 - Microsoft MS-DOS operating system versions 2.x, 3.x, 4.x, 5.x,

 6.0, 6.2, 6.21, 6.22

 - Microsoft Windows 95

 - Microsoft Windows 98

SUMMARY

=======

This article contains a summary of MS-DOS partitioning information. For

information on how MS-DOS assigns drive letters, please see the following

article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q51978

 TITLE : Order in Which MS-DOS Assigns Drive Letters

MORE INFORMATION

================

A hard disk's master boot record (MBR) is located in the first sector of

the disk (cylinder 0, side 0, sector 1). The partition table is located at

offset 01BE, containing up to four 16-byte entries. The fourth byte of

each partition table entry is used to mark the partition type.

MS-DOS began supporting hard disks in version 2.0.

MS-DOS Versions 2.x

MS-DOS 2.x supports one type 01 partition of up to 15 megabytes (MB) in

size, which uses a 12-bit file allocation table (FAT). Fdisk creates only

one MS-DOS partition per drive.

MS-DOS 3.0

MS-DOS 3.0 supports partitions larger than 15 MB using a 16-bit FAT, which

allows a smaller cluster size and more efficient disk usage. As a result,

MS-DOS 2.x hard disks larger than 15 MB are incompatible with later

versions of MS-DOS. Fdisk creates only one MS-DOS partition per drive.

MS-DOS 3.3

MS-DOS 3.3 introduces support for more than one logical drive per hard

disk. Logical drives are treated as completely separate disks under

MS-DOS, even though they may occupy the same physical hard disk.

This is supported by using nonbootable MS-DOS partitions known as extended

MS-DOS partitions. Fdisk reports these as EXT DOS; other MS-DOS partitions

are reported as PRI DOS (for primary MS-DOS). Each primary MS-DOS

partition is a logical drive, and extended MS-DOS partitions contain from

1 to 23 logical drives (MS-DOS supports drive letters up to Z). Logical

drives in extended MS-DOS partitions have the same FAT type as a primary

MS-DOS partition of the same size.

Only one PRI DOS partition and one EXT DOS partition is allowed per drive.

On computers with two physical hard disks, a PRI DOS partition is not

required on the second physical disk. A PRI DOS partition is required on

the first physical disk. (MS-DOS does not support more than two physical

disks.)

MS-DOS 4.0

MS-DOS versions 4.0 and later support logical drives larger than 32 MB.

Full usage of these logical drives requires the MS-DOS program Share.exe

to be loaded in MS-DOS 4.0.

The following table explains the versions 4.x and later MS-DOS partition

types:

 Partition Fdisk Starting in

 Type Reports Size FAT Type MS-DOS version

 --

 01 PRI DOS 0-15 MB 12-Bit 2.0 (a)

 04 PRI DOS 16-32 MB 16-Bit 3.0

 05 EXT DOS 0-2 GB (b) n/a 3.3

 06 PRI DOS 32 MB-2 GB (b) 16-bit 4.0

 (a) 15-MB size limitation extended in version 3.0.

 (b) 2 GB (gigabytes) includes a limit of 1024 cylinders per drive

 imposed by the standard AT ROM BIOS interrupt 13 protocol.

MS-DOS 5.0

MS-DOS versions 5.0 and later support up to eight physical hard disks.

Share.exe is not required for full large-drive support; this support is

included in the MS-DOS kernel.

MS-DOS versions 5.0 and later support the same partitioning strategy as

version 4.x, including Fdisk's inability to create more than one primary

MS- DOS partition on a physical disk. However, because some original

equipment manufacturer (OEM) partitioning software allows you to create

more than one primary MS-DOS partition, MS-DOS versions 5.0 and later have

kernel support for up to four primary MS-DOS partitions. This makes it

easier to upgrade from previous versions of OEM-modified MS-DOS. Fdisk

still creates only one PRI DOS partition on a physical disk.

NOTE: Many OEMs have changed their versions of MS-DOS to support more than

one primary MS-DOS partition, larger type 04 partitions, and new partition

types.

Windows 95

Windows 95 supports two new partition types (0E and 0F) to support the

logical block addressing (LBA) INT13h extensions as specified in the

Windows 95 Driver Development Kit (DDK).

 Partition Fdisk Starting in

 Type Reports Size FAT Type version

 --

 01 PRI DOS 0-15 MB 12-Bit MS-DOS 2.0

 04 PRI DOS 16-32 MB 16-Bit MS-DOS 3.0

 05 EXT DOS 0-2 GB n/a MS-DOS 3.3

 06 PRI DOS 32 MB-2 GB 16-bit MS-DOS 4.0

 0E PRI DOS 32 MB-2 GB 16-bit Windows 95

 OF EXT DOS 0-2 GB n/a Windows 95

NOTE: Type 0E is the same partition type as 06, and 0F is the same as 05.

However, applications should use the (LBA) INT13h extension's read/write

functions to read from or write to the drive instead of the normal

Cylinder/Head/SectorPerTrack (CHS) INT13h functions because the hard disk

has more than 1024 cylinders and/or more than 16,711,680 sectors. Note

that earlier versions of FDISK recognize these Windows 95 partitions as

NON-DOS partitions.

Windows 95 OEM Service Release 2 and Windows 98

Windows 95 OEM Service Release 2 (OSR2) and Windows 98 support two new

partition types (0B and 0C) to support the FAT32 file system. For

additional information about FAT32, please see the following article in

the Microsoft Knowledge Base:

 ARTICLE ID: Q154997

 TITLE : Description of FAT32 File System

The partition types supported by OSR2 and Windows 98 are as follows:

 Partition Fdisk Starting in

 Type Reports Size FAT Type version

 01 PRI DOS 0-15 MB 12-Bit MS-DOS 2.0

 04 PRI DOS 16-32 MB 16-Bit MS-DOS 3.0

 05 EXT DOS 0-2 GB n/a MS-DOS 3.3

 06 PRI DOS 32 MB-2 GB 16-bit MS-DOS 4.0

 0E PRI DOS 32 MB-2 GB 16-bit Windows 95

 0F EXT DOS 0-2 GB n/a Windows 95

 0B PRI DOS 512 MB - 2 terabytes 32-bit OSR2

 0C EXT DOS 512 MB - 2 terabytes 32-bit OSR2

Additional query words: 2.x 3.00 3.10 3.30 3.30a 4.00 4.01 4.01a 5.00

5.00a 6.00 6.20 6.21 6.22 95

==

Keywords : kbhw diskmem msdos win98 win95

Version : 2.x 3.x 4.x 5.x 6.00 6.20 6.21 6

Platform : MS-DOS WINDOWS

Issue type : kbinfo

===

Copyright Microsoft Corporation 1998.

�Administering Long File Names

If you are supporting long file names at a site with many users, consider the issues in this section.

If you back up files to a server that does not support Windows 98 long file names, use the LFNBK utility to save and restore long file names.

For information, see “Using the LFNBK Utility for Temporary Compatibility” later in this chapter.

Be aware of utilities that will not work with the Windows 98 directory entries for long file names. Some virus scanning programs, disk repair utilities, disk optimizers, and other programs depend on the FAT file system and might not work with long file names. If you are unsure whether a utility is compatible with the long file name system, check with the manufacturer. If you must use an incompatible program, be sure to turn off long file names by using the LFNBK utility before proceeding.

Do not use file names that are more than 50 to 75 characters long. Although file names can be up to 255 characters, the full path name cannot be more than 260 characters. To save room for moving a file from one directory to another, use file names shorter than the limit. Besides, file names that are too long can make browsing a list difficult.

Publish a naming convention for your site so that users are aware of naming considerations and can prevent problems with the long file names they use.

For example, your policy could recommend making the first three or four letters significant, so that the 8.3 file name aliases can be distinguished from each other. The following example shows the alias names for some long file names:

Status Report for Oct	->	STATUS~1.TXT

Status Report for Nov	->	STATUS~2.TXT

Status Report for Dec	->	STATUS~3.TXT

Using the following alternate file names, you can distinguish between the 8.3 file names:

Oct Status Report	->		OCTSTA~1.TXT

Nov Status Report	->		NOVSTA~1.TXT

Dec Status Report	->		DECSTA~1.TXT

You could also recommend that users give files a short file name as part of the long file name. For example:

Mktg_rpt-Marketing Report for our new project -> MKTG_R~1.TXT

As part of the naming convention, recommend that users check the properties for files to ensure that the alias (the MS-DOS Name in the Properties dialog box) is what they expect it to be.

Tip On FAT16 drives, it is usually best to store files in a directory beneath the root directory. This is especially true for files with long file names. Files with long file names use more directory entries than files with 8.3 file names. Because the number of entries in the root is limited to 512, the root directory can fill up with fewer files if long file names are used.

Notice that typing the command mkdir Examples creates a long file name directory entry that contains the name Examples to preserve the case, plus an 8.3 file name alias entry with the name EXAMPLES for compatibility. In this example, two directory entries are used.

Using the LFNBK Utility for Temporary Compatibility

Most hard disk utility programs released before Windows 98 require updating to work correctly with Windows 98. If you use a hard disk utility that was not created especially for use with Windows 98, you might lose long file names and you are at risk of losing data. Examples of such programs include the following:

·	Older MS-DOS versions of Norton Utilities by Peter Norton Computing

·	PC Tools by Central Point Software, Inc.

·	Microsoft Defragmenter for MS-DOS version 6.0, 6.2, 6.21, or 6.22

·	Stacker 4.0 by STAC Electronics

In special cases, you might need to run backup or disk management utilities created for older versions of Windows or MS-DOS that are not compatible with the extended file system capabilities of Windows 98. Or you might need occasionally to run an application that is not compatible with long file names. In such cases, you can use the LFNBK utility to remove (and later restore) long file names on a disk.

To install the LFNBK utility

·	From the Windows 98 compact disc, copy Lfnbk.exe to the \Windows directory on your computer.

Caution The LFNBK utility is intended for use only by experienced Windows 98 users with special needs for compatibility with older disk utilities. It is not intended for everyday use by average users.

Microsoft recommends that users rely on the disk management utilities included with Windows 98 or use Windows 98-compatible utilities from other vendors, rather than attempting to use older utilities that are not compatible with Windows 98.

Notice also that the DriveSpace 3 utility included with Windows 98 is compatible with long file names and can be used without LFNBK to manage compressed disks created with older versions of DriveSpace 3 or DoubleSpace.

The following shows the syntax for LFNBK:

lfnbk [/v] [/b | /r | /pe] [/nt] [/force] [/p] [drive]

Table 10.9 lists and describes the parameters for this command.

Table 10.9 LFNBK parameters

Parameter	Description

/v	Reports actions on the screen.

/b	Backs up and removes long file names on the disk.

/r 	Restores previously backed-up long file names.

/pe	Extracts errors from backup database.

/nt	Does not restore backup dates and times.

/force	Forces LFNBK to run, even in unsafe conditions.

/p	Finds long file names but does not convert them to 8.3 file name aliases. This reports the existing long file names, along with the associated dates for file creation, last access, and last modification of the file.

To preserve long file names with disk utilities that do not recognize them

 1.	Turn off tunneling.

	In the System option in Control Panel, click the Performance tab, and then click File System. In the File System Performance dialog box, click the Troubleshooting tab, and check the option named Disable Long Name Preservation for Old Programs.

 2.	Close all other applications. LFNBK cannot rename open files.

 3.	At the command prompt, type lfnbk /b [drive] to back up and remove long file names.

 4.	Restart the computer, and then run the disk utility. If it is an MS-DOS-based utility, run it in MS-DOS Mode. For a Windows-based utility, run it in the usual way.

 5.	At the command prompt, type lfnbk /r [drive] to restore long file names.

 6.	Turn tunneling on again, and then restart the computer.

The LFNBK utility actually renames each file with a long file name to its associated alias. The file name changes are stored in the Lfnbk.dat file in the root of the drive where you are running LFNBK. This file is used to restore long file names (when you run LFNBK with the /r switch).

The following list provides some brief notes for using the LFNBK utility:

·	You cannot use LFNBK to repair long file name problems.

·	LFNBK might not be able to rename files with exact matches to long file name aliases, and the related alias is not guaranteed to be the same as before running LFNBK.

·	After you run LFNBK and then restart Windows 98, the default Start menu will appear, rather than your custom Start menu. After you run lfnbk /r to restore long file names, your custom Start menu will also be restored.

·	If the directory structure changes after you run lfnbk /b, then long file names cannot be restored with lfnbk /r. For example, if you run a disk utility that prunes or removes subdirectories, LFNBK cannot restore the long file names within those subdirectories.

Creating Long File Names at the MS-DOS Prompt

At an MS-DOS prompt or when Windows 98 is started only at the command prompt (from the F8 Startup menu), the keyboard buffer’s ability to create long file names is limited to 127 characters. This is because the default command-line character limitation is 127 characters. In the default configuration, the MS-DOS environment will not allow more than 127 characters in a given command line. (However, in batch files, or for environment variables and other virtual machine (VM) elements, the long file name support is 244 characters.)

You can increase the global command-line character limit for the keyboard buffer to its maximum by placing the following line in Config.sys:

shell=c:\windows\command.com /u:255

If the shell command is already present with the /u switch, increase the value to 255.

This command will affect all VMs and the Windows 98 command line.

With the command-line character limit set to its maximum of 255 characters, file names are limited to 255 characters minus the contents of the command line. For example, the command line might contain the following:

copy con "long filename"

In this case, the maximum length of the long file name is 244 characters (255 minus the 11 characters of the command including spaces and quotation marks).

Note It is necessary to put the file name in quotation marks on the command line only if the file name contains special characters, such as spaces.

Notice, however, MS-DOS-based applications configured to run in MS-DOS Mode use only the real-mode FAT file system. Because of this, long file names created in a Windows environment are not visible when the system runs in MS-DOS Mode; only the 8.3 file name aliases are visible.

The same is true of files with long file names that are copied to a floppy disk subsequently used by a down-level FAT file system such as MS-DOS 6.0, Windows 3.1, OS/2 2.11, Windows NT 3.1, and so on.) On down-level file systems, only the 8.3 file name alias is visible on the floppy disk, even if it contains long file names created in Windows 98.

�Installable File Systems

Windows 98 features a layered file system architecture that supports multiple file systems, including the virtual file allocation table (VFAT), CD-ROM file system (CDFS), and UDF.

The new file system architecture makes the computer easier to use and improves file and disk I/O performance. Features of the new file system architecture include long file name support and a dynamic system cache for file and network I/O.

Long file name support improves ease of use because users no longer need to reference files by the MS-DOS 8.3 file name. Instead, users can specify names of up to 255 characters to identify their documents. In addition, file names seem less cryptic and easier to read, because Windows 98 hides the file name extensions from users.

Windows 98 features 32-bit, protected-mode code for reading information from — and writing information to — the file system and the disk device. It also includes 32-bit dynamically sizable caching mechanisms, and a full, 32-bit code path is available from the file system to the disk device. Moreover, it includes an open file system architecture for future system support.

Figure 28.8 shows the file system architecture used by Windows 98.

�

Figure 28.8 Windows 98 file system architecture

The Windows 98 file system architecture is made up of the following components:

·	Installable File System (IFS) Manager. The IFS Manager is responsible for arbitrating access to different file system components.

·	File system drivers. The file system driver layer includes access to FAT-based disk devices, CD-ROM file systems, and redirected network device support.

·	Block I/O subsystem. The block I/O subsystem is responsible for interacting with the physical disk device.

The following sections describe these components.

